SAN DIEGO POLICE FORENSIC SCIENCE SECTION

QUALITY INCIDENT REPORT

CASE \# \qquad

CHARGE (S) \qquad

PROPERTY TAG \# or INCIDENT \# \qquad ITEM \# or BARCODE \qquad 2-1

DESCRIPTION OF ITEM Swab taken from the handle of a knife (Item 2)

STAFF SAMPLE \# ASSOCIATED W/ EVIDENCE 88
\% CONTRIBUTION \qquad

Interpretation of sample affected by presence of staff member?
YES
NO

ADDITIONAL COMMENTS

A mixture of DNA from four people was obtained from the swab of the knife handle (2-1). The STRmix results indiciated a ratio of 1:13:16:70. The 70% contributor was consistent with the victim (blood), the 16% was consistent with the staff member. The 13% and 1% were not discriminating enough for CODIS. It is inconclusive as to whether the absence of the staff member would have allowed a CODIS search on the DNA types foreign to the victim. The handle of the knife was re-swabbed and a mixture of DNA from at least two people was obtained. The ratio was 1:99, with the victim being the 99% contributor. The 1% contributor was not discriminating enough for CODIS.

ANALYST

DATE
12/3/2015

Note: Please attach a copy of the STRMix Database Hit Report or Local Match Detail Report, a copy of the page of notes detailing the examination of the item (s) in question, the electropherogram, the first page of the STRMix deconvolution, and/or any other pertinent documentation.

San Diego Police Department Forensic Biology Section - Evidence Inventory Worksheet

Item Name:

One knife with a black handle. Blue apparent dye was observed all over the knife. Brown/yellow staining was observed on the knife blade and handle. Two stains, one on each side of the knife blade, tested positive with a presumptive test for blood and were swabbed as 2-2 and 2-3 (see photos below). A yellowish stain on the knife handle tested positive with a presumptive test for blood. The entire knife handle, avoiding yellow and brown/yellow staining was swabbed as 2-1. This swab tested negative with a presumptive test for blood.
phenol +; swabbed apparent bloodstain as 2 -

KB 11.23 is The harte of the knee cars wassailed on 11-23.15 o will be extracted is ABAB-KDB. 20151123
pheno + ; swabbed
apparent bloodstain as 2-
2

Sample(s) for DNA analysis	Body Fluid Test	Amount	Designated
Knife handle (avoiding stained areas)	Pheno -	1 swab	2-1
Apparent bloodstain on knife blade	Pheno +	1 swab	2-2
Apparent bloodstain on knife blade	Pheno +	1 swab	2-3
crufe tlarde (aroching stoired creac) is 11-23-15	Phenot	1 Swo.b	2-4

Evidence marked directly w/ barcode \& initials
\square Proximal container marked
\checkmark Repackaged as original and sealed

STRmix V2.3.06 - User:
Analysis run:
Case number:
Sample ID:
Comments:
http://STRMIX.esr.cri.na
STRMIX ${ }_{i}$
RESOLVE
MORE DNA
MIXTURES.

KHill

10 November 2015 15:56
92-100288
2-1

SUMMARY OF INPUT DATA

Kit Used	SDPD GlobalFiler
Number of Contributors	4
Input Files	$2-1(92-100288) . \operatorname{csv}$
Known contributors under Hp	
Known contributors under Hd	

SUMMARY OF CONTRIBUTORS

| Contributor | 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| DNA Amounts | 3288 | 1424 | 32 | 600 |
| Mixture Proportions | 62% | 27% | 1% | 11% |
| Degradation starting at 80.0bp | $6.614 \mathrm{rfu} / \mathrm{bp}$ | $2.865 \mathrm{rfu} / \mathrm{bp}$ | $0.173 \mathrm{rfu} / \mathrm{bp}$ | $1.674 \mathrm{rfu} / \mathrm{bp}$ |

RUN INFORMATION

Total iterations	6.2797223 E 7	Gelman-Rubin convergence diagnostic	1.25
Inter replicate efficiency	PCR $1-100.00 \%$	Allele variance	17.30
Effective sample size	13528.88	Stutter variance	19.60
Average (log) likelihood	27.58	Seed value	659963
Mx prior mean	nsa	Mx prior variance	n / a

$$
\begin{aligned}
& C_{2} \rightarrow \text { database nob } 88 \\
& C_{4} \rightarrow \text { Imine Ramming }
\end{aligned}
$$

STRmix V2.3.06-User: KHill
Analysis run: 2015-11-10-16-49-38

Deconvolution chosen C:\ProgramData \STRmix
Results\92-100288-2-1-2015-11-10-15-20-49B \backslash
Comparison of sample(s): 2-1 (92-100288).csv,
to 76 individuals on the database (C:\ProgramData\STRmix\Databases\SDPD_Globalfiler_Database.csv)

LR cutoff set at 100000
Using population database NIST_GF_Cauc.csv
Mutation rate used 0.0 (only applicable for familial searches)

05_A05_88.hid: $88-3.4302311586071014$ E18

CaseNumber
92-100288
SampleName
1-Feb
Comments
variance
6.6346,1.6553

Stuttervariance
7.09,2.4927
detectionThreshold
\#\#\#\#\#\#\#\#
loci
23
stutter
0.3
degradation
-1
degmax
0.01
dropin
390
dropinParameters
0.0,0.0
dropinFrequency
0.0012
minVarFactor
0.1

RWSD
0.005

ESSthinning
100000
Saturation
32000

httap://STRMIX.esr.cri.nzz
STRmix V2.3.06 - User:
KHill
Analysis run:
12 November 2015 07:31
Case number:
92-100288
Sample ID:
Comments:

SUMMARY OF INPUT DATA

Kit Used	SDPD GlobalFiler
Number of Contributors	4
Input Files	$2-1(92-100288)$. csv
Known contributors under Hp	88. csv
Known contributors under Hd	

PER LOCUS LIKELIHOOD RATIOS

	NIST_GF AfAm.csv Theta $0.01 \mathrm{~b}(1.0,1.0)$			NIST GF Asian.csv Theta $0.02 \mathrm{~b}(1.0,1.0)$			NIST GF_Cauc.csv Theta $0.01 \mathrm{~b}(1.0,1.0)$			NIST_GF_Hisp.csv Theta $0.01 \mathrm{~b}(1.0,1.0)$		
Locus	$\operatorname{Pr}(\mathrm{E} \mid \mathrm{Hp})$	$\operatorname{Pr}(\mathrm{E} \mid \mathrm{Hd})$	LR	$\operatorname{Pr}(\mathrm{E} \mid \mathrm{Hp})$	$\mathrm{Pr}(\mathrm{E} \mid \mathrm{Hd})$	LR	$\operatorname{Pr}(\mathrm{E} \mid \mathrm{Hp})$	$\operatorname{Pr}(\mathrm{E} \mid \mathrm{Hd})$	LR	$\operatorname{Pr}(\mathrm{E} \mid \mathrm{Hp})$	$\operatorname{Pr}(\mathrm{E} \mid \mathrm{Hd})$	LR
D3S1358	$2.60 \mathrm{E}-4$	$1.03 \mathrm{E}-4$	2.52	$3.06 \mathrm{E}-4$	$1.39 \mathrm{E}-4$	2.21	$1.74 \mathrm{E}-4$	$4.81 \mathrm{E}-5$	3.61	$2.20 \mathrm{E}-4$	$7.64 \mathrm{E}-5$	2.88
vWA	$1.02 \mathrm{E}-4$	$7.06 \mathrm{E}-5$	1.45	$6.48 \mathrm{E}-6$	$4.98 \mathrm{E}-6$	1.30	$4.86 \mathrm{E}-5$	$3.65 \mathrm{E}-5$	1.33	9.16E-5	$6.70 \mathrm{E}-5$	1.37
D16S539	$1.04 \mathrm{E}-4$	$5.90 \mathrm{E}-5$	1.76	$6.01 \mathrm{E}-5$	$2.09 \mathrm{E}-5$	2.88	$8.21 \mathrm{E}-5$	$6.33 \mathrm{E}-5$	1.30	$1.45 \mathrm{E}-4$	$8.69 \mathrm{E}-5$	1.67
CSF1PO	3.05E-3	$3.11 \mathrm{E}-4$	9.80	$2.28 \mathrm{E}-3$	$2.20 \mathrm{E}-4$	1.04 El	$2.17 \mathrm{E}-3$	1.8IE-4	1.20 E 1	$2.65 \mathrm{E}-3$. $2.48 \mathrm{E}-4$	1.07 El
TPOX	$1.08 \mathrm{E}-3$	$5.22 \mathrm{E}-4$	2.06	$2.67 \mathrm{E}-3$	$2.19 \mathrm{E}-3$	1.22	$2.30 \mathrm{E}-3$	$1.65 \mathrm{E}-3$	1.39	$2.00 \mathrm{E}-3$	$1.36 \mathrm{E}-3$	1.47
Yindel												
D8S1179	7.09E-5	$2.54 \mathrm{E}-6$	2.79E1	$3.39 \mathrm{E}-5$	$2.81 \mathrm{E}-6$	1.21 El	$8.40 \mathrm{E}-5$	$4.78 \mathrm{E}-6$	1.76 El	$6.79 \mathrm{E}-5$	$5.53 \mathrm{E}-6$	1.23 El
D21S11	$1.21 \mathrm{E}-6$	$2.96 \mathrm{E}-7$	4.09	$1.74 \mathrm{E}-6$	$4.28 \mathrm{E}-7$	4.08	$1.03 \mathrm{E}-6$	$1.62 \mathrm{E}-7$	6.33	$1.35 \mathrm{E}-6$	$2.28 \mathrm{E}-7$	5.91
D18S51	$6.55 \mathrm{E}-6$	$1.36 \mathrm{E}-6$	4.80	1.54E-5	1.99E-6	7.73	9.97E-6	$1.62 \mathrm{E}-6$	6.16	$1.15 \mathrm{E}-5$	1.82E-6	6.34
DYS391												
D2S441	$1.38 \mathrm{E}-6$	$8.28 \mathrm{E}-7$	1.66	$1.54 \mathrm{E}-5$	$5.75 \mathrm{E}-6$	2.68	$8.66 \mathrm{E}-6$	$7.61 \mathrm{E}-6$	1.14	$2.21 \mathrm{E}-5$	$2.04 \mathrm{E}-5$	1.09
D19S433	$3.01 \mathrm{E}-6$	$2.09 \mathrm{E}-8$	1.44 E 2	$2.45 \mathrm{E}-6$	$1.29 \mathrm{E}-8$	1.90 E 2	$9.09 \mathrm{E}-7$	$1.52 \mathrm{E}-8$	5.98 El	6.22E-6	$5.34 \mathrm{E}-8$	1.16 E 2
TH01	$3.32 \mathrm{E}-5$	$2.22 \mathrm{E}-5$	1.49	$2.37 \mathrm{E}-5$	$7.65 \mathrm{E}-6$	3.10	$1.31 \mathrm{E}-5$	$1.06 \mathrm{E}-5$	1.25	$1.78 \mathrm{E}-5$	$1.22 \mathrm{E}-5$	1.46
FGA	$1.94 \mathrm{E}-5$	$1.36 \mathrm{E}-6$	1.42 E 1	$2.31 \mathrm{E}-5$	$2.04 \mathrm{E}-6$	1.13E1	$3.28 \mathrm{E}-5$	$2.95 \mathrm{E}-6$	1.11 El	2.05E-5	$2.29 \mathrm{E}-6$	8.94
D22S1045	$3.65 \mathrm{E}-5$	$9.90 \mathrm{E}-6$	3.68	$9.62 \mathrm{E}-5$	$4.54 \mathrm{E}-5$	2.12	$3.56 \mathrm{E}-4$	$1.77 \mathrm{E}-4$	2.01	$4.69 \mathrm{E}-4$	$8.91 \mathrm{E}-5$	5.26
D5S818	$5.80 \mathrm{E}-8$	$1.67 \mathrm{E}-8$	3.48	$1.05 \mathrm{E}-6$	$6.61 \mathrm{E}-7$	1.58	$2.41 \mathrm{E}-7$	$1.42 \mathrm{E}-7$	1.70	$3.78 \mathrm{E}-6$	$2.82 \mathrm{E}-6$	1.34
D13S317	$1.03 \mathrm{E}-4$	$2.27 \mathrm{E}-5$	4.53	$1.64 \mathrm{E}-6$	$3.51 \mathrm{E}-7$	4.66	$1.28 \mathrm{E}-4$	$3.06 \mathrm{E}-5$	4.18	$6.37 \mathrm{E}-5$	$8.30 \mathrm{E}-6$	7.67
D7S820	$1.27 \mathrm{E}-4$	$1.90 \mathrm{E}-5$	6.70	$3.12 \mathrm{E}-4$	$6.83 \mathrm{E}-5$	4.56	$1.72 \mathrm{E}-4$	$3.12 \mathrm{E}-5$	5.52	$2.76 \mathrm{E}-4$	$5.80 \mathrm{E}-5$	4.77
SE33	4.17E-7	$1.33 \mathrm{E}-9$	3.13 E 2	$3.23 \mathrm{E}-6$	$5.86 \mathrm{E}-8$	5.50 El	$7.71 \mathrm{E}-7$	$3.75 \mathrm{E}-9$	2.05 E 2	$6.74 \mathrm{E}-7$	$3.03 \mathrm{E}-9$	2.22E2
D10S1248	$1.17 \mathrm{E}-4$	$2.47 \mathrm{E}-5$	4.73	$2.43 \mathrm{E}-4$	$6.02 \mathrm{E}-5$	4.03	$2.93 \mathrm{E}-4$	$8.51 \mathrm{E}-5$	3.45	$2.11 \mathrm{E}-4$	$6.30 \mathrm{E}-5$	3.36
D1S1656	$6.95 \mathrm{E}-7$	$8.73 \mathrm{E}-9$	7.96 E 1	$5.13 \mathrm{E}-7$	$1.60 \mathrm{E}-8$	3.21 El	$1.66 \mathrm{E}-6$	$5.80 \mathrm{E}-8$	2.87 E 1	$1.78 \mathrm{E}-6$	$4.39 \mathrm{E}-8$	4.06 El
D12S391	$1.31 \mathrm{E}-6$	$2.12 \mathrm{E}-7$	6.19	$3.00 \mathrm{E}-7$	$7.26 \mathrm{E}-8$	4.14	$2.18 \mathrm{E}-7$	$3.34 \mathrm{E}-8$	6.52	$5.80 \mathrm{E}-7$	$5.52 \mathrm{E}-8$	1.05 El
D2S1338	$6.06 \mathrm{E}-6$	$2.59 \mathrm{E}-7$	2.34 El	4.67E-5	6.72E-6	6.95	$1.31 \mathrm{E}-5$	7.42E-7	1.77 E 1	$2.85 \mathrm{E}-5$	$2.57 \mathrm{E}-6$	1.11 El
LR Total			2.41 E 18			1.04 E 16			1.24 E 16			7.14E16
$99.0 \% 1 \text {-sided }$ lower HPD			7.84 E 17			2.38 E 15			5.50 E 15			9.79 E 15

